两相电流体方程组的无量纲化
This is a series of lecture notes on the advanced fluid dynamics. This original lectures see here. This blog introduces how to find scaling and similarity parameters relevant to a problem at hand. Normalization by these scales leads to dimensionless parameters which represent the relative importance of various parts of the full equations. Depending on the magnitudes of these parameters, suitable approximations can be devised which can lead to answers that capture the essence of the problem. As an illustration we use the incompressible fluid of constant density to explain this philosophy and approach.
电流体方程组
前面我们已经得到,对于电流体两相流动,如果物性参数如特征密度、特征粘度、特征表面张力、特征介电常数和特征电导率分别为 \(\rho,\mu,\gamma,\varepsilon,\sigma\),其它特征参数如特征长度、特征时间、特征速度、特征压力、特征场强和特征电荷密度分别为 \(L,T,U,P,E_0,\varepsilon E_0/L\),则 NS 方程可无量纲化为(记为方程(1)) \[ \boxed{\begin{aligned}\frac{L}{TU}\frac{\partial \boldsymbol{u}^*}{\partial t^*}+\nabla^*\cdot(\boldsymbol{u}^*\otimes\boldsymbol{u}^*)=&-\frac{P}{\rho U^2}\nabla^*p^*+\frac{\mu}{\rho UL}\nabla^*\cdot (\nabla^*\boldsymbol{u}^*) \\ &+\frac{\gamma}{\rho U^2L} \kappa^*\nabla^* c+\frac{\varepsilon E_0^2}{\rho U^2}\left(\rho_e^* \boldsymbol{E^*}-\frac{1}{2}\boldsymbol{E^*E^*}\nabla^*\varepsilon^*\right)\end{aligned}}. \]
静电方程可无量化为(记为方程(2)) \[ \boxed{\nabla^*\cdot(\varepsilon^*\boldsymbol{E}^*)=\rho_e^*}. \] 电荷传输方程可无量纲化为(记为方程(3)) \[ \boxed{\frac{\partial \rho_e^*}{\partial t^*}+\frac{\sigma T}{\varepsilon}\nabla\cdot(\sigma^*\boldsymbol{E}^*)+\frac{UT}{L}\nabla^*\cdot(\rho_e^*\boldsymbol{u}^*)=0}. \]
无量纲参数选取
在流体力学中特征长度根据具体物理问题取值,特征时间可从以下几个时间尺度取值
特征时间 | 表达式 |
---|---|
粘性弛豫时间 | \(\tau_\mu= (\rho L^2)/\mu\) |
毛细时间 | \(\tau_\gamma=\sqrt{(\rho L^3)/\gamma}\) |
表面张力弛豫时间 | \(\tau_\text{s}=\mu L/\gamma\) |
电荷弛豫时间 | \(\tau_\text{e}=\varepsilon/\sigma\) |
电流体流动时间 | \(\tau_\text{c}=\mu/(\varepsilon E_0^2)\) |
通过以上时间尺度可以组合以下无量纲数 \[ Ca_\text{E}=\frac{\tau_\text{s}}{\tau_c}=\frac{\varepsilon LE_0^2}{\gamma},\ Re_\text{E}=\frac{\tau_e}{\tau_c}=\frac{\varepsilon^2E_0^2}{\sigma \mu}. \] 当然纯粹从量纲分析,给出流体的物性参数和特征长度、特征场强,一定可以组合很多个时间尺度参数。目前常用的时间尺度就如上表所示。为了使方程 (1) 和 (3) 简化,特征速度取 \(U=L/T\) 则可以大大减少计算量。从压力梯度项系数可以看出,如果取特征压力为 \(P=\rho U^2 L\),则该系数可以化为 1。如果取特征时间为 \(\tau_\gamma\),则特征压力建议取值为 \(P=\gamma/L\);如果特征时间为 \(\tau_\text{c}\),则特征压力建议取值为 \(P=\varepsilon E_0^2\)。比如该文献特征时间取值为 \(\tau_{\gamma}\),特征压力取值为 \(\gamma/L\)。
建议取值
特征长度:\(L\),特征时间:\(T=\tau_\gamma=\sqrt{(\rho L^3)/\gamma}\),特征速度:\(U=L/T\),特征压力:\(P=\gamma/L\),特征电荷密度:\(\rho_e^0=\varepsilon E_0/L\)
电流体方程组如下: \[ \boxed{\begin{aligned} &\frac{\partial \boldsymbol{u}^*}{\partial t^*}+\nabla^*\cdot(\boldsymbol{u}^*\otimes\boldsymbol{u}^*)=\nabla^*p^*+Oh\nabla^{*2}\boldsymbol{u}^*+\kappa^*\nabla^* c+Ca_\text{E}\left(\rho_e^* \boldsymbol{E^*}-\frac{1}{2}\boldsymbol{E^*E^*}\nabla^*\varepsilon^*\right), \\ &\nabla^*\cdot(\varepsilon^*\boldsymbol{E}^*)=\rho_e^*, \\ &\frac{\partial \rho_e^*}{\partial t^*}+\frac{\tau_\gamma}{\tau_\text{e}}\nabla\cdot(\sigma^*\boldsymbol{E}^*)+\nabla^*\cdot(\rho_e^*\boldsymbol{u}^*)=0. \end{aligned}} \] 其中 \(Oh=\mu/\sqrt{\rho L\gamma}\)。
特征长度:\(L\),特征时间:\(T=\tau_\text{c}=\mu/(\varepsilon E_0^2)\),特征速度:\(U=L/T\),特征压力:\(P=\varepsilon E_0^2\),特征电荷密度:\(\rho_e^0=\varepsilon E_0/L\)
电流体方程组如下: \[ \boxed{\begin{aligned} &\frac{\tau_\mu}{\tau_\text{c}}\left(\frac{\partial \boldsymbol{u}^*}{\partial t^*}+\nabla^*\cdot(\boldsymbol{u}^*\otimes\boldsymbol{u}^*)\right)=\nabla^*p^*+\nabla^{*2}\boldsymbol{u}^*+Ca_\text{E}\kappa^*\nabla^* c+\left(\rho_e^* \boldsymbol{E^*}-\frac{1}{2}\boldsymbol{E^*E^*}\nabla^*\varepsilon^*\right), \\ &\nabla^*\cdot(\varepsilon^*\boldsymbol{E}^*)=\rho_e^*, \\ &\frac{\partial \rho_e^*}{\partial t^*}+\frac{1}{Re_\text{E}}\nabla\cdot(\sigma^*\boldsymbol{E}^*)+\nabla^*\cdot(\rho_e^*\boldsymbol{u}^*)=0. \end{aligned}} \] 注意,该方程组中 \(\tau_\mu/\tau_\text{c}=Re,Ca_\text{E}=Re/We\)。